Vector Evaluated and Objective Switching Approaches of Artificial Bee Colony Algorithm (ABC) for Multi-Objective Design Optimization of Composite Plate Structures
نویسندگان
چکیده
In this paper, a generic methodology based on swarm algorithms using Artificial Bee Colony (ABC) algorithm is proposed for combined cost and weight optimization of laminated composite structures. Two approaches, namely Vector Evaluated Design Optimization (VEDO) and Objective Switching Design Optimization (OSDO), have been used for solving constrained multi-objective optimization problems. The ply orientations, number of layers, and thickness of each lamina are chosen as the primary optimization variables. Classical lamination theory is used to obtain the global and local stresses for a plate subjected to transverse loading configurations, such as line load and hydrostatic load. Strength of the composite plate is validated using different failure criteria—Failure Mechanism based failure criterion, Maximum stress failure criterion, Tsai-Hill Failure criterion and the Tsai-Wu failure criterion. The design optimization is carried for both variable stacking sequences as well as standard stacking schemes and a comparative study of the different design configurations evolved is presented. Performance of Artificia Bee Colony (ABC) is compared with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for both VEDO and OSDO approaches. The results show ABC yielding a better optimal design than PSO and GA. l
منابع مشابه
Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures
In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete var...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURAL USING ARTIFICIAL BEE COLONY ALGORITHM
Over the past few years, swarm intelligence based optimization techniques such as ant colony optimization and particle swarm optimization have received considerable attention from engineering researchers. These algorithms have been used in the solution of various structural optimization problems where the main goal is to minimize the weight of structures while satisfying all design requirements...
متن کاملDesign of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS
This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...
متن کاملDesign of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS
This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...
متن کاملOptimization of Biodiesel Production from Prunus Scoparia using Artificial Bee Colony Algorithm
Renewable energy sources are developed worldwide, owing to high oil prices and in order to limit greenhouse gas emissions. The objective of this research was to study the feasibility of biodiesel production from mountain almond (Prunus Scoparia) oil using ultrasonic system and optimization of the process using Artificial Bees Colony (ABC) Algorithm. The results showed that by increasing the mol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. of Applied Metaheuristic Computing
دوره 2 شماره
صفحات -
تاریخ انتشار 2011